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Let !l be a positive measure with compact support on R. We consider the nth
root asymptotic behavior of orthonormal polynomials associated with the measure
11.. The main result consists of two theorems: (i) a characterization and (ii) a
localization theorem. In the first theorem regular nth root asymptotic behavior on
a subset of the support of the measure Ii is compared with the asymptotic behavior
of other polynomial sequences, and equivalences between the different types of
behavior are proved. In the second theorem the asymptotic behavior of the original
orthonormal polynomials is characterized by the asymptotic behavior of polyno
mials orthonormal with respect to restrictions of the measure J1. (ei 1991 Academic

Press, Inc.

1. INTRODUCTION

Let Jl be a posItIve measure with compact support S(Jl) S; R, S(Jl) IS

assumed to be an infinite set, and let

(Yn = Y,,(Jl) > 0) (1.1 )

be the orthonormal polynomial of degree n E N associated with Jl; i.e.,

for m, nEN, (1.2)

where 13 m" denotes Kronecker's symbol. Since S(Jl) is an infinite set, all
elements of {1, X, x 2, ... } are linearly independent in L 2(Jl), and therefore all
polynomials (1.1) are uniquely determined by (1.2) and the last assumption
in (1.1). We call Jl a weight measure.
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In this paper we investigate regular nth root asymptotic behavior of the
sequence {Pn(J.t;z); nEN}; i.e., we study the asymptotic behavior of the
sequence

{IPn(f..t; z )\l/n; n EN} as n~ 00. (1.3)

The statement of the main results requires some preparations. For any
weight measure /l the orthonormal polynomials Pn(/l; z) and their leading
coefficients Yn(/l), n EN, satisfy certain asymptotic inequalities which are
put together in the next lemma:

LEMMA 1.1 (see Section 3.9 of [UI2]). We have

lim inf jPn(/l; z)ll/n ~ egll(z,oo)

n -. 00

localy uniformly for z E C\I(/l),

.. lin >- 1
hm mf Yn(/l) ,... (S())'n-. 00 cap /l

and for any infinite subsequence N s N we have

for z quasi everywhere on S(/l).

(1.4 )

(1.5)

(1.6)

In Lemma 1.1 I(/l)sR, D, and gg(z, w), ZEC-, wED, denote the
smallest interval containing the support S(/l), the domain C - \ S(/l), and
the (generalized) Green function of the dimain Q, respectively. The Green
function gQ(" w) is harmonic in Q\{w}, subnarmonic in C, has a
logarithmic pole with residuuum 1 at z = w, and is equal to 0 quasi
everywhere on C- \Q (see Theorem 2.6 and Chapter IV, No.2 of [La]). A
property is said to hold true quasi everywhere (short: qu.e.) on a set S S C
if it holds true for every XES with possible exceptions on a subset of outer
capacity zero. By capacity we mean the logarithmic capacity and denote it
by cap(·). If for a domain Q s C- with 00 E Q, we have cap(C- \Q) = 0;
then we define gQ(z, w) == 00, which is compatible with the defining proper
ties of the Green function.

If equality holds in (1.4), (1.5), and (1.6), then this case is called regular
(nth root) asymptotic behavior. Actually, it turns out that it is enough to
have equality in only one of the three asymptotic estimates, then equality
necessarily follows in the two others. A more precise formulation is given
in
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LEMMA 1.2 (see Theorem 1 of [VI2]). The following three assertions
are equivalent.

(i) We have

lim IPn(J1; z )II/n = egQ(z, co)

n ~ co

locally uniformly for Z E C \I(p).

(ii) We have

r () I/n I
1m Yn J1 = (S())

n~ 00 cap J1

(iii) For any infinite subsequence N <:; N we have

lim sup IPn(p; z)ll/n = 1
n--+ oo,neN

for z quasi everywhere on S(J1).

(1.7 )

(1.8)

( 1.9)

DEFINITION 1.3. The sequence {PAp; z); n EN}, is said to possess
regular (nth root) asymptotic behavior if one of the three assertions of
Lemma 1.2 holds true.

Remarks. (1) The case of weight measure p with cap(S(J1)) = °is not
excluded in Lemmas 1.1, 1.2, or Definition 1.3. However, with respect to
regular asymptotic behavior, this case is in a certain sense trivial, since the
assertions (i), (ii), and (iii) hold true for any weight measures J1 if only
cap(S(p)) = 0, and therefore we always have regular asymptotic behavior
for such weight measures.

(2) For monic orthogonal polynomials there exists a definition of
regular (nth root) asymptotic behavior that is similar to that in
Lemma 1.2. However, since there is no leading coefficient Yn(J1), n E N, its
role is taken over by the L 2(p )-norm of the monic orthogonal polynomials
(see Section 3.3 of [VI2]). In the present paper we consider only orthonor
mal polynomials. All results can be transferred from one to the other case
without difficulties.

The classical, normalized Jacobi polynomials P~rx,P),IX, f3 > -1, for
instance, have regular asymptotic behavior (see Theorem 8.1 of [Fr] for a
proofof (1.9)). It is also not too difficult to show that if S(p) is a real inter
val, and the measure J1 has a density function bounded away from zero
everywhere on S(p), then orthonormal polynomials Pn(P; z), n E N, have
regular asymptotic behavior (see [Fa] for perhaps the first proof of a
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result in this direction). However, weight measures p, may be much more
general, and the polynomials Pn(P,; z), n E N, have nevertheless regular
asymptotic behavior. (For examples of quite general weight measures p"

which are supported on Julia sets, we refer to [VA] Section 1.4, or to
[BGM]).

Major contributions to the development of the theory of regular (nth
root) asymptotic behavior have been obtained by Erdos and Turan
[ErTu], Erdos and Freud [ErFr], Ullman [Ull-14], Widom [Wi], and
Ullman together with coauthors ([UIWy] and [UWZ]. (For recent
reviews on orthogonal polynomials and their asymptotic behavior in
general we refer to [Ne] and [Lu]).

One of the problems with practical and theoretical importance is the
search for general criteria that guarantee regular asymptotic behavior. A
desirable criterion would be one that is necessary and sufficient at the same
time. Unfortunately, none of the known criteria has this property. But there
are different possibilities to characterize regular asymptotic behavior. We
will prove such a characterization result in this paper.

The paper was initiated by the investigation of the convergence and
divergence of essentially non-diagonal sequences of Pade approximants
(see [St]). There is a special interest in the asymptotic behavior of
orthonormal polynomials P n(P,; z), n EN, on certain subsets of the support
S(p,). We note that in (1.9) of Lemma 1.2, and therefore also in Defini
tion 1.3, the whole support has to be considered, while we are now
interested in local asymptotic behavior.

Although each orthonormal polynomial Pn(P,; .) is determined by the
whole weight measure p" experience has shown that the asymptotic
behavior on a certain subset of S(p,) depends only on the restriction of the
measure p, to this subset. In Theorem 2.1 (the Characterization Theorem)
it will be shown that this empirical observation can indeed be proved for a
large class of subsets of S(p,). In the theorem, regular asymptotic behavior
on certain subsets is characterized by a comparison with the asmptotic
behavior of other sequences of polynomials. One of the main consequence
of Theorem 2.1 is a Localization Theorem (Theorem 2.3) for regular
asymptotic behavior, which allows the characterization of regular
asymptotic behavior by the asymptotic behavior of the orthonormal
polynomials with respect to restrictions of the measure p,.

Besides this original impetus for the present investigation, it turned out
during the process of writing that Theorem 2.3 also solves a problem posed
in [Lu] (see problem (ii), Section 3.9 of [Lu]).

All results in the paper are proved only for weight measures with com
pact support S(p,) in R, but they can be generalized to weight measures p,
with compact support in C. These more general results wil be contained in
a forthcoming paper by V. Totik and the author, where the problem of nth
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root asymptotic behavior of orthonormal polynomials with respect to
weight measures in C is treated in a unified approach. The results will also
cover generalizations of the Lemmas 1.1 and 1.2 and other material.

The outline of the present paper is as follows: In Section 2 the main
results are stated and discussed. In Section 3 and 4 the proof of
Theorem 2.1 is prepared by some lemmas from potential theory and the
theory of orthogonal polynomials. Section 4 contains two lemmas, which
are the key pieces of the proof of Theorem 2.1. Then in Section 5
Theorem 2.1 will be proved.

2. MAIN RESULTS

Let Iln denote the set of all polynomials of degree less or equal n EN,
K £ R a compact set, fl K the restriction fll K of the measure fl to the set K,
Q K the domain C-\S(flK), and I K the smallest interval containing S(flK)'
Besides the orthonormal polynomials Pn(fl; z), n E N, we also consider
polynomials Pn(/lK; z) orthonormal with respect to the restricted measure
flK' and sequences of arbitrary polynomials Un E Iln, n E N, of degree
at most n, where the only assumption is that these polynomials are not
identically zero.

THEOREM 2.1 (Characterization Theorem). Let K£R be a compact set
so that the support S(flK) is an infinite set and

cap(K n S(/l)) = cap(It n S(/l)).

Then the following five assertions are equivalent:

(2.1)

(a) The sequence {Pn(;.tK; . ); n EN} has regular (n th root) asymptotic
behavior.

(b) For any sequence of points {zn} with zn-+ZOEC as n-+ 00, we
have

(c) For any infinite subsequence N £;; N we have

lim sup IPn(/l; z)11/n = 1
n---+ cJ:J,nEN

for Z quasi everywhere on S(flK)'

640/66/2-2

(2.2)

(2.3 )
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(d) For any infinite sequence of polynomials {UnEIIn, Un not identi
cally zero, nEN£;N} andfor any sequence of points {zn} with zn-+ZOEC

as n -+ 00, we have

(2.4)

(e) For any infinite sequence of polynomials {Un} as in assertion (d)
we have

(2.5)

for Z quasi everywhere on S(JiK)'

If S(JiK) is a regular set with respect to the solution of the Dirichlet
problem in the domain Q K' then in assertions (b) and (d) the asymptotic
inequalities (2.2) and (2.4) hold locally uniformly in Z E C, in assertion (e) the
asymptotic inequality (2.5) holds not only quasi everywhere, but uniformly on
S(JiK), and in (2.3) of assertion (c) we have an upper inequality "~"

uniformly on S(JiK) in addition to the equality quasi everywhere stated
in (2.3).

Remarks. (1) It is easy to see that the formulations given in assertions
(b) and (d) imply that the asymptotic inequalities (2.2) and (2.4) hold
locally uniformly in every open set in which gQK(Z, (0) is continuous. This
is, for instance, always the case in Q K'

(2) The assumption that S(JiK) is an infinite set is necessary in order
that all polynomials Pn(JiK; z), n E N, are defined uniquely.

If cap(S(JiK)) = 0, then it can easily be verified that assumption (2.1) and
all five assertions of Theorem 2.1 hold true independently of any other
property of the weight measure Ji (compare Remark 1 to Lemma 1.2), and
therefore in this special case the five assertions of Theorem 2.1 are trivially
equivalent.

(3) By example 2.4 below it will be shown that assumption (2.1)
cannot be dropped without replacement. If we drop assumption (2.1), then
only the implication

« a) v (d) v (e)) = «b) /\ (c)) (2.6)

can be proved. The assertions in both groups of (2.6) remain equivalent.
(4) The two inclusions

(2.7)
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can easily be verified. With assumption (2.1) they imply that

cap(J(n S(f-l)) = cap(S(f-l K)) = cap(K n S(f-l)), (2.8)

and
(2.9)

The last identity follows from the uniqueness of the Green function (see
Theorem 2.6 and Chapter VI, No.2 of [La]).

From (2.7) and (2.8) it also follows that assumption (2.1) implies that
the two sets K n S(f-l) and S(f-l K) can differ at most in a set of capacity zero.
Therefore, we can replace S(f-l K) by K n S(J1) in the assertions (c) and (e).

(5) If one chooses K = I(J1), then assumption (2.1) is satisfied and we
have J1 = J1K and Q = Q K' This case is not trivial and it is interesting, since
then the equivalence of the assertions (a), (d), and (e) gives a characteriza
tion of regular asymptotic behavior of the orthonormal polynomials
Pn(J1; '), n E N, by the asymptotic behavior of other sequences of polyno
mials Un"

(6) Since the right-hand side of (2.4) is equally 1 quasi everywhere
on S(J1K) (see Theorem 2.6' of [La]), assertion (e) is a special case of
assertion (d).

Theorem 2.1 will be proved only in Section 5 after preparations in the
Sections 3 and 4.

Using Lemma 1.1 we can deduce upper and lower asymptotic bounds for
the nth root of the orthonormal polynomials Pn(J1;')' n EN, from the
assertions (a) and (b). They are stated in the next corollary. We note that
the bounds (2.10) refer to the original orthonormal polynomials Pn (J1; z),
while the assumption in the corollary is related to the asymptotic behavior
of the orthonormal polynomials Pn (J1K; z) associated with the restricted
weight measure J1K'

COROLLARY 2.2. Let K £.; R be a compact set that satisfies the assump
tions of Theorem 2.1, and let us assmume that the sequence
{Pn(J1K; )); n EN} has regular asymptotic behavior. Then we have

egg(z, co) ::S lim inf IPn(f-l; Z )1 1/n ::S lim sup IPn(J1; z )1 1/n ::S egQK(z, co l, (2.10)

where the first inequality in (2.10) holds true locally uniformly for
z E C\I(J1), the last inequality holds for all Z E C, and it holds locally
uniformly in every open set in which g~2K(z, 00) is continuous.

From the equivalence of the assertions (a) and (c) in Theorem 2.1 we
deduce a localization theorem, which is the second main result of the
paper.
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THEOREM 2.3 (Localization Theorem). Let Jj := [aj' bJ, a j < bj ,

j = 1, 2, ..., be a countable collection of intervals, which cover the support
S(f..l). Then the sequence {Pn(f..l; . ); n E N} has regular (n th root) asymptotic
behavior if, and only if, all sequences {Pn(f..lJj;·); nEN}, j= 1, 2, ... with
cap(Jj I1S(f..l))>O have regular (nth root) asymptotic behavior.

Proof (of Theorem 2.3). It is easy to see that for each set K:= Jj ,

j = 1, 2, ..., the assumption (2.1) of Theorem 2.1 is satisfied. The restriction
of the measure f..l of Jj is denoted by f..lJj' j = 1, 2, ....

We assume that cap(Jj l1 S(f..l)) > 0 for j = 1, ..., m o (moE Nu {<Xl}), and
cap(Jj 11 S(f..l)) = 0 for j> mo. Let B be the union of the sets S(f..lJ)'
j = 1, ..., mo. Because of (2.8) we have cap((Jj 11 S(f..l))\S(f..lJ)) = 0 for all
j = 1, 2, ..., and the set S(f..l) \ B is also of capacity zero since the union of
countably many sets of capacity zero is again a set of capacity zero (see the
corollary to Theorem 2.2 of [La]).

Let us assume that the orthonormal polynomials Pn(f..lJ; . ), j = 1, ..., mo,
J

have regular asymptotic behavior for n --+ 00. Since for each K:= Jj ,

j = 1, ..., mo, the assumption (2.1) of Theorem 2.1 is satisfied, we know from
assertion (c) of Theorem 2.1 that equality (2.3) holds true for z quasi
everywhere on S(f..lJ) for j = 1, ..., mo' This implies that (2.3) is proved for
z quasi everywhere on B, and therefore also for z quasi everywhere on S(f..l).
By assertion (iii) of Lemma 1.2 we then know that the sequence {Pn(f..l; . );
n EN} has regular asymptotic behavior.

Let us now assume that the sequence {Pn(f..l; .); n EN} has regular
asymptotic behavior. By Definition 1.3 and assertion (iii) of Lemma 1.2 this
implies that (2.3) holds true for z quasi everywhere on S(f..l). From the
equivalence of assertion (a) and (c) of Theorem 2.1 it then immediately
follows that each sequence {Pn(f..lJj;·); nEN}, j=1, ...,mo, has regular
asymptotic behavior. Q.E.D.

The next example shows that assumption (2.1) of Theorem 2.1 is
necessary in one or the other form.

EXAMPLE 2.4. Let C be the classical Cantor set on [0, 1], and let f..l2 be
a probability measure with S(f..l2) = C so that the orthonormal polyomials
Pn(f..l2; .), n EN, do not have regular asymptotic behavior. The existence of
such a measure f..l2 follows from [VI2; Theorem 2], but it is also not
difficult to describe a construction. For instance, the measure

(<5 x denotes Dirac's measure) (2.11 )

has the required property if {x n } S C is a sequence of points dense in C
and O<a< 1.
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We now consider the weight measure fl := fll + fl2, where fll is the linear
Lebesgue measure on [0, 1]. It can easily be verified, for instance, by the
Erdos-Turan criterion (see Section 3.4 of [U12]), that the sequence
{Pn(fl; . ); n EN} has regular asymptotic behavior. Hence, assertion (b) of
Theorem 2.1 holds true. On the other hand, we have Pn(flc; . ) = Pn(fl2; .)
for all n E N since the linear Lebesgue measure of C is equally zero. This
implies that assertion (a) of Theorem 2.1 is false if we take K = C. The
Cantor set C is of positive capacity and has no inner points. Hence,
assumption (2.1) is not satisfied.

3. NOTATIONS AND SOME LEMMAS

We assemble some lemmas from potential theory and the theory of
orthogonal polynomials. Only the last four of these lemmas cannot be
found elswhere and have to be proved here. Two limit functions L 2 and Lo,
which will be introduced in Definition 3.3, are basic for the results of
Section 4 and the proof of Theorem 2.1.

By Z(P) we denote the set of zeros of a polynomial P, taking account
of multiplicities. Thus, deg(P) = card Z(P). For a finite set Z s C of n
numbers, the monic polynomial

Q(Z;z):= f1 (z-w)=zn+ ... EIln,
',."EZ

Q(q;; .) == 1, (3.1 )

is denoted by Q(Z; . ). The counting measure of a finite set Z is denoted by
Vz , and for a polynomial P the measure VZ(P) is denoted by V p . This last
measure is called zero distribution of the polynomial P. Thus, we have
Vz= vQ(Z;.)·

As (logarithmic) potential of a measure fl in C, we define

q(fl; z):= flog Iz- wi dfl(W) for z E C. (3.2)

This differs by a negative sign from the more usual definition (see
Chapter II Section 4 of [La]), but we prefer (3.2) because of its close
connection with monic polynomials. For any monic polynomial Q we have
q(vQ ; z) = log IQ(Z)I.

We say that a sequence of measures {fln} converges weakly to a measure
fl, written as fln ~ fl, if for any function f continuous on the Riemann
sphere C, we have f f dfln - f f dfl as n - 00. Since the unit ball B of
positive measures (with respect to the norm 11·11 of total variation) is
weakly compact, from every infinite sequence of measures {fln} S B we can
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select an infinite subsequence that is weakly convergent. This result is often
called Belly's Selection Theorem.

The next two lemmas contain some basic results or immediate conse
quences of basic results from potential theory.

LEMMA 3.1 (see Theorem 3.8 of [La]). Let v be a probability measure
with compact support S(v) s; C. Then there exists a sequence of finite sets
Zn S; S(v), n E N, each set contains n points, and

._1 *vn .--vz ~ vn n

From (3.3) it follows that

as n -* 00. (3.3 )

lim sup q(vn ; z) = q(v; z) for z qu.e on S(v), (3.4a)

lim q(vn ; z) = q(v; z)
n~ 00

locally uniformly for z E C\ S(v), (3.4b)

and for any sequence of points {zn} with Zn -* Zo E C as n -* 00, we have

(3.4c)

The limit (3.4a) follows from (3.3) and the lower envelope theorem of
potential theory (see Theorem 3.8 of [La]), the limit (3.4b) directly follows
from (3.3), and the limit (3.4c) follows from the principle of descent in
potential theory (see Theorem 1.3 of [La]).

LEMMA 3.2 (see Chapter IV Section 1 of [La]). Let v be a positive
measure with compact support in C, K S; R a compact set ofpositive capacity
that does not separate C, and W w = ww,K the harmonic measure representing
the point WE C\K on K. Then there exists a measure v on K with the
property that

and we have

and

q(v; z) = q(v; z) + c for Z qu.e. on K,

Ilvll = Ilvll,

(3.5)

(3.6a)

c= f gC\K(W, (0) dv(w).
C\K

(3.6b)
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If the set K is regular (with respect to the Dirichlet problem in C\ K), then
in (3.5) equality holds true for all Z E K.

The measure v is called balayage measure of v, and the process of going
from q( v; z) to q(v; z) + c is called balayage or sweeping out of the measure
v from C\K onto K (see Chapter IV Section 1 of [La]). The non-negative
constant c appears in (3.5) since the domain C\K is unbounded (see
Corollary 3 to Theorem 4.2 of [La]).

We next introduce two limit functions, which are of basic importance in
the proof of Theorem 2.1. Their properties will be studied in the subsequent
lemmas.

DEFlNITION 3.3. Let p be a positive measure with compact support on R,
NsN an infinite subsequence, and {Un} = {Un=zm+ ... EIln;m~nEN}
a sequence of monic polynomials. We define the upper (logarithmic) limit
function L 2 by

w~;;

Of special interest is the case of sequences of monic orthogonal polyno
mials {Yn(p)~lPn(P;'); nENsN}, for which we introduce a separate
notation. We define

and call function (3.7b) the upper limit function (for orlthonormal polyno··
mials).

Remarks. (1) The right-hand side of (3.7a) can be rewritten by using
the identity

(3.8 )

which shows that L 2 and Lo are defined by the nth root of the modulus of
the polynomials normalized in L 2(p). The left-hand side of (3.8) further
shows that the polynomials Un do not necessarily have to be monic, as has
been assumed in Definition 3.3. The normalization can always be achieved
by a multiplication with a non-zero constant, and such a multiplication will
not change the value of (3.8) and therefore lets L 2 be invariant.
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(2) The functions L o and L z may be identical 00. It is not difficult to
verify that if this is the case at a finite point Z E C, then the function L o or
L z is identically 00 everywhere in C.

(3) Like in the proof of the principle of descent in Theorem 1.7 of
[La], or by considering weakly convergent subsequences of {vun;nEN}
and then applying the principle of descent, it can be shown that for any
sequence of points {zn; n E N} with Zn --+ Zo E C as n --+ 00, n E N, we have

lim sup Lz(Jl, {Un};zn)::;;Lz(Jl, {Un};zo),
n- oo,neN

(3.9)

and for every ZoEC there exists a sequence {zn} such that we have equality
in (3.9).

If we know that the zero distributions vUn and the LZ(Jl )-norms of the
polynomials Un converge, then the lower envelope theorem of potential
theory (see Theorem 3.8 of [La]) gives us a representation of the limit
function L z as a logarithmic potential plus a constant. This is the constant
c I in the next lemma.

LEMMA 3.4 (see Remark 2 to Theorem 3.8 of [La]). Let {Un =
zm + ... E IIn; m::;; n ENs N} be an infinite sequence of monic polynomials,
with all its zeros contained in a compact set V S t, and let

hold true. Then we have

and

as n--+oo, nEN, (3.10)

(3.11 )

and vI is a non-negative measure with S(vI ) S V.

We note that in (3.10) the case CI = 00 has been excluded. The support
of VI may be unbounded and therefore q(v l ; z) may be identical infinity.
The measure vI is not necessarily a probability measure; it may even be
identical zero.

In the next two lemmas we prove more specific properties of the limit
function L z•

LEMMA 3.5. Let KsR be a compact set with cap(S(JlK))>O, and
{Un = zm + ... E IIn; m::;; n ENs N} an infinite sequence of monic poly
nomials. If

for all Z E C\IK, (3.12 )
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then

for Z qu.e. on S{J.l.d,

for all ZE C.

(3.13)

(3.14)

Remark. If in (3.12) and (3.13) the function l2 is replaced by its upper
regularization, the function L 2 , then the assumptions of the lemma are
strengthened, and conclusion (3.14) remains true.

Proof Basically, the inequality (3.14) follows from (3.12) because of the
continuity of logarithmic potentials in Cartan's fine topology (for a defini
tion see Section 3 of Chapter V of [La]), and (3.14) follows from (3.13) as
a consequence of the principle of domination (see Theorem 1.27) of [La]).
We will give the proof in more detail:

Because of cap(S{J.l.K))>O, the Green function g{z, OO}=gQK(Z, 00) can
be represented as a logarithmic potential plus a constant (see Theorem 2.6
and Chapter IV, No.3 of [La]), and therefore it is subharmonic and
especially upper semicontinuous in C. This implies that if (3.12) holds true
then it also holds true with l2 replaced by L 2. We will now use this
stronger assumption.

The lemma will be proved first under the additional assumption that the
sequence {Un} of polynomials has the properties assumed in Lemma 3.4;
i.e., the zeros of all Un are contained in a compact set V s; C, and the two
limits in (3.10) exist. We then know from (3.11) that the limit function L 2

is the logarithmic potential plus a constant.
Let us assume that (3.12) holds true. Both functions, gQK(Z, 00) and L 2,

are logarithmic potentials plus a constant, and therefore they are con
tinuous in Cartan's fine topology; and further Q K is dense in C in this
topology. Hence, the inequality (3.12), with l2 replaced by L 2, extends to
the whole complex plane C, which proves (3.14).

Let us now assume that (3.13) holds true. From the lower envelope
theorem (see Theorem 3.8 of [La]) together with Lemma 3.4 it follows that
l2 and L 2 are equal quasi everywhere. Hence, (3.13) remains true if l2 is
replaced by L 2 • Both functions, gaiz, (0) and L 2 , are logarithmic poten
tials plus a constant. Since cap(S(J.l.K)) > 0, the logarithmic potential
representing gaK(z, (0) is generated by a measure of finite energy, which is
contained in S(J.l.K) (see Theorem 2.6, Chapter IV, No.3, and Chapter I
Section 4 of [La]). The inequality (3.14) therefore follows from (3.13) by
the principle of domination (see Theorem 1.27 of [La]).

We finally show that the additional assumptions are not really necessary.
If the sequence {Un} is such that the zeros of all Un are contained in a
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compact set V s; C, but the two limits in (3.10) do not exist, then by Helly's
Selection Theorem any infinity subsequence of {Un} contains a sub
sequence such that the two limits in (3.10) exist. With the usual compact
ness arguments then (3.14) follows from (3.13). We will give more details:
Let us assume that (3.14) is wrong. Then there exists Zo E C with

(3.15)

From the definition of L 2 , it then follows that there exists an infinite
subsequence Nos;N and a sequence of points znEC, nENo, with

and Zn ~ Zo (3.16)

for n ~ 00, n E No. By Helly's Selection Theorem we can select an infinite
subsequence N1 S; No such that the two limits in (3.10) exist. Since for this
case (3.14) has already been proved, it follows with (3.16) that

L 2(zo) = L 2(j1., {Un;nENd;zo)::SgQK(ZO' 00),

which contradicts (3.15).
If there does not exist a compact set V S; C containing all zeros of all

polynomials Un' then we may choose R > 0 with S(j1.) S; {izi ::s R} and
k> 1 arbitrary, and factor each polynomial Un in the product VnWn of two
monic polynomials Vn and Wn such that Vn has all its zeros in {izi ::s kR}
and Wn has all its zeros in the complement. From these definitions it
immediately follows that

(k_1)R::s\Un(z))!1/n ::S(k+1)R
Vn(z

and an elementary calculation shows that

for all Izl::S R,

for alllzi ::SR. For the sequence {Vn} the lemma is prove. With (3.17) this
proof carries over to the original sequence {Un} since we may choose R
and k arbitrarily large. Q.E.D.

LEMMA 3.6. Let the compact set K S; R and the sequence {Un} be the
same as in Lemma 3.5. If

(3.18 )



nTH ROOT ASYMPTOTIC BEHAVIOR 139

then there exists an infinite subsequence N 1 £;; N so that the two limits in
(3.10) of Lemma 3.4 exists for this sequence, and the measure VI and the
constant Cl satisfy

cap{z E S(f.1:K); q(v l ; z) - CI > O} > 0 (3.19 )

Proof Let X o be a regular point of S(f.1:K)' (Regular with respect to the
Dirichlet problem in C\S(f.1:K»' Since the set of irregular points of a
compact set is of capacity zero (see Lemma 5.2 of [La]), assumption (3.18)
implies that there exists a regular point Xo E S(f.1:K) with

(3.20)

As in the second part of the proof of Lemma 3.5 it then follows from the
definition of L 2 that there exists an infinite subsequence No £;; N and points
XnEC, nENo, with

for n -+ OJ, n E No. By Helly's Selection Theorem we can select an infinite
subsequence of N 1 £;; No such that the two limits in (3.10) exist. If C 1 < OJ,

then we know from Lemma 3.4 that

(3.21 )

The selection of the subsequence of N 1 implies that L 2(il, {Un;nENd;xo)
~ldf.1:, {Un;nENd;xo»O.

Let us now assume that (3.19) is false. Then because (3.21), assumption
(3.13) of Lemma 3.5 is satisfied for L 2 (f.1:, {Un; n ENd; z), and from (3.14)
it follows that

L 2 (f.1:, {Un;nENd;z)~gjh(xO' OJ).

Since Xo has been chosen as a regular point of S(ilK), the right-hand side
of the last inequality must be equally zero (see Lemma 4.5 of [La]), but
this contradicts our assumption made in (3.20). Hence, (3.19) is proved.

Q.E.D.

While the last three lemmas were concerned with the upper limit functoll
L 2 , we now turn to the limit function Lo, which is associated with sub
sequences of monic orthogonal polynomials, which will be denoted by

nEN, (3.22 )
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where, as in (3.7b), 'Y n(Jl) is the leading coefficient of Pn(Jl; . ) introduced in
(1.1 ). It is well known that the monic orthogonal polynomials are uniquely
defined by the minimality property

IIQn(fl;' )IIL2(Jl) = min { II UIIL2(Jl); U(z) =zn + ... E/ln} (3.23)

(see Theorem 2.2 of [Fr]).

LEMMA 3.7. (a) For any infinite subsequence Ns;N, we have

for all ZE C. (3.24 )

(b) If for an infinite subsequence N S; N the two limits in (3.10) exist
with Un(z) = Qn(fl; z), then Vl is a probability measure with S(vd S; S(fl)· If
c1 > - 00, then the measure v1 is offinite energy. (For a definition of finite
energy see Chapter I Section 4 of [La]).

Proof (a) The inequality (3.24) is an immediate consequence of (1.4)
and (1.6) of Lemma 1.1.

(b) The polynomial Qn(fl; z), n E N, is of exact degree n, all zeros of
Qn(fl; z) are contained in [(fl), and every component of [(fl)\S(fl) contains
at most one zero (see Chapter I of [Fr]). Therefore, v1 is a probability
measure, and S(v1) S; S(fl).

From (3.24) and from (3.11) of Lemma 3.4 it follows that in case of
Cl> - 00 the potential q(v 1 ; z) is bounded from below, which implies that
v1 is of finite energy (see Chapter I, Section 4 of [La]). Q.E.D.

LEMMA 3.8. The following four assertions are equivalent:

(a) The sequence {Pn(Jl; z)} has regular asymptotic behavior.

(b) Lo(fl, N; z) == g.Q(z, (0).

(c) cap{Z E S(fl); Lo(fl, N; z) > O} = O.

(d) (lin) log II Qn(fl; . )11 L2(Jl) --+ log cap(S(fl)) as n --+ 00, n E N.

Proof In many respects the lemma is a reformulation of Lemma 1.2,
only we now use the limit function L o. We prove the lemma by the
sequence (a) => (b) => (c) => (d) => (a).

(a) => (b): The implication follows from assertion (i) of Lemma 1.2
together with Lemma 3.5, where we have to choose K = [(fl), N = N, and
Un=Pn(fl;'), nEN.

(b)=> (c): The Green functiong.Q(z, (0)=0 quasi everywhere on S(fl)
(see Theorem 2.6' of [La]).
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(c) ~ (d): Assertion (c) together with Definition 3.3 and (1.6) implies
that assertion (iii) of Lemma 1.2 is satisfied. Then assertion (d) follows
from assertion (ii) of Lemma 1.2 and the identity

(3.25 )

(d) ~ (a): Regular asymptotic behavior of the sequence {Pn(/1; . )}
follows by assertion (ii) of Lemma 1.2 from assertion (d) together with
identity (3.25). Q.E.D.

4. Two BASIC LEMMAS

Two key lemmas for the proof of Theorem 2.1 will be proved. The more
difficult one is the second lemma.

As in Section 2, we denote the restriction of the measure /1 to a compact
set K f; R by /1K'

LEMMA 4.1. If

(4.1)

then we also have

(4.2)

Proof Let us assume that (4.1) is true. We prove that this implies the
existence of a sequence {Un(z) = zn + ... E JIn; n E N f; N} of monic
polynomials with

1
lim sup -log II Un II L 2(I'K) < log cap(S(J1K))'

11-+ co, nENn

(4.3 )

From the minimality property (3.23) and the equivalence of the assertions
(c) and (d) of Lemma 3.8, it then follows that (4.2) holds true. In
Lemma 3.8 we have to replace /1 by J1K'

The basic idea for the construction of the polynomials Un consists in a
modification of the orthogonal monic polynimials Qn(/1; z), n E N. The
zeros of Qn(/1; z) are moved from outside of S(/1K) onto the set S(/1K)'
Since we do not know whether the set S(J1K) is regular, some technical
precautions have to be taken.



142 HERBERT STAHL

From (4.1) and Lemma 3.6 we know that there exists an infinite
subsequence N £ N with

for n ---+ CD, n EN, (4.4)

and

(4.5)

In part (b) of Lemma 3.7 it has been shown that Vo is a probability
measure with S(vol £ S(,u).

Since the capacity is continuous from the outside, we can find sets S £ R
that consist of finitely many closed intervals, contain S(,uK) in its interior,
and the capacity cap(S) approaches cap(S(JiK)) as close as we want.

The measure Vo is in general not restricted to the set S. We consider the
decomposition

and VOl := Vol R\S' (4.6)

Using the balayage technique, which has been described in Lema 3.2, we
sweep the measure VOl out of C\S onto S. The balayage measure, which is
defined by (3.6a), is denoted by V ll , and we define

(4.7)

which is a probability measure on S. From Lemma 3.2 and the assumed
regularity of S, we know that

where C I is non-positive constant given by

for all ZE S, (4.8)

(4.9)

(see (36.b) of Lemma 3.2).
Like the measures vI and vll, so also the constant C I depends on the

choice of S. We next show that if S is chosen sufficiently small, then

(4.10)

If Co = - CD, then nothing remains to be proved. We assume that
co> - CD. It follows from (1.4) of Lemma 1.1 by the same arguments as
used in Lemma 3.5 that

forall ZEC, (4.l1a)
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and with (4.8) it follows that
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(4.11 b)

for all Z E C and all admissible sets S, but also for the extreme case
S = S(pK)' In the latter case we have

(4.12 )

for quasi every Z E S(PK), where OJ S (IlK) is the equilibrium distribution on
S(PK) and S(VI) s:;; S(PK)' The right-hand side of (4.12) is the Green
function gQK(Z, 00).

Since Co + CI > - 00, it follows from (4.11b) that VI is of finite energy.
This implies that every set of capacity zero is of vI-measure zero (see
Theorem 2.4 of [La]). Hence, (4.12) holds vI-almost everywhere, and by
the principle of domination (Theorem 1.27 of [La]) it then follows that the
inequality in (4.12) extends to all Z E C.

From the maximum principle for harmonic functions we know that in
(4.12) we have either a strict inequality or equality for all ZEQK' In the
latter case the measure VI is the equilibrium distribution OJ S(IlK)' But this
would imply that in (4.11a) and (4.11b) we have equality for quasi every
Z E S(PK), which is not possible because of (4.5). Hence, in (4.12) we have
a strict inequality in QK' This proves (4.10) for the extreme case S= S(PK)'

Formula (4.9) shows that C I decreases with a shrinking set S. The
smallest value of C I is assumed if S = S(PK)' Using this monotoicity and the
continuity of the capacity from the outside, it can be shown that that (4.10)
is already true for admissible sets S if they are only small enough.

After these preparations we can start with the construction of the monic
polynomials Un' From the definition of the measure Vo in (4.4), and from
its decomposition in (4.6), it follows that for every n E N we can select a
subset ZOn of the zero sets Zn := Z(Qn(P; .)) of the orthogonal polynomials
Qn(/1; . ) in such a way that

and

1
-v ~ vn ZOn 01

for all nEN

as n ---+ 00, n E N.

(4.13a)

(4.13b)

On the other hand it has been shown after Lemma 3.1 that for each n E N
we can select a set Z In from S, which has exactly as many points as the
ZOn, and

1
-vz , ~ VlIn n

as n ---+ 00, n E N. (4.14 )
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From (4.13a), (4.13b), and the fact that S(f.l K) ~ S, it follows that

lim !log IQ(Zon;z)1 =q(vol;z)
n---'J-oo,neN n

uniformly for z E S(flK)' (4.15)

From the principle of descent of potential theory (Theorem 1.3 of [La])
and (4.14) we know that for any sequence of numbers {zn} with
Zn ~ Zo E S(flK) we have

lim sup ! log IQ(ZIn; Zn)! :'( q(v ll ; Zo).
n---+oo,neN n

The definition of v11 together with (4.8) implies that

for all Z E S,

and this shows that q(v ll ; z) is continuous in S. Since S(flK) ~ S, we there
fore know that

lim sup ! log IQ(Z In; z) I :'( q(V11 ; z)
n -+ 00, n E N n

uniformly for Z E S(flK)' (4.16)

The polynomials Q(ZOn;') and Q(Zln;') in (4.15) and (4.16) are monic
polynomials with zero sets ZOn and Zln, respectively. From the limits (4.15)
and (4.16) together with (4.8) we derive that

. 1 IQ(Zln; Z)\
hm sup -log Q(Z . ) :'( CI

l1--+oo,neN n On'Z

uniformly for Z E S(flK)' (4.17)

The monic polynomial Un is now defined as

for each n E N. For the L 2(flK)-norm of these polynomials we have the
upper estimate

(4.19)
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With the second limit in (4.4), the uniform upper estimate proved in (4.17),
and the inequality (4.10), we deduce from (4.19) that

lim sup ! log II Unll L2(I'K) ~ C j + Co < log cap(S(/lK))' (4.20)
n -+ 00, n E N n

which proves the asymptotic inequality (4.3), and thereby the whole
lemma. Q.E.D.

LEMMA 4.2. Let K:= [ab az] be an interval. If there exists an infinite
sequence of monic polynomials {Un} = {Un(z) = zm + ... E Iln; m ~ n E

N ~ N} with real zeros, and if

then we also have

cap{ z E S(/lK); Lo(/l, N; z) > O} > O.

(4.21)

(4.22 )

Remark. In a certain sense Lemma 4.2 is the converse of Lemma 4.1; we
have only to set Un = Qn(/l; .), n E N ~ N. But in Lemma 4.2 the set K is
more special; it has to be an interval.

Proof The basic idea of the proof is to combine the zero distributions
of the elements of the two sequences {Un} and {Pn(/l; . )} so that we can
define a new sequence of polynomials with an asymptotic zero distribution
like that of {Un} on a certain segment of S(/lK) and like that of {Pn(/l;·)}
on the remaining parts of S(/l). The points, where these two subsets meet,
demand special care. Generally speaking, the proof of the lemma requires
rather detailed considerations, and is, unfortunately, rather long.

The proof is carried out indirectly: We assume that (4.21) holds true,
while (4.22) is false, and show that this leads to a contradiction.

Without loss of generality, we can specialize the assumptions of the
lemma in the following five aspects:

(i) By a simple linear transformation of the variable z, we can
ensure that

cap(I(/l)) ~ 1. (4.23 )

(ii) By Lemma 3.6 we can assume that there exists an infinite
subsequence N j ~ N so that the limits

and

for n->oo, nEN j , (4.24)

exist, and that (4.21) holds also true for the subsequence {Un; nENd.

640/66/2-3
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(iii) Without loss of generality we can assume that in (4.24)
Cl> - 00. For otherwise we can modify the sequence {Un; n E Nd by for
mally increasing the index n (not the actual degree m) of the polynomials
Un" More precisely: Because cap(S(/lK)) > 0 we have

(4.25)

and therefore we can choose a constant C with 0> c> - 00 and for every
n E N 1 an integer m(n) > n such that

1
m(n) log II Unll L2(i'K) -+ C

We define a new sequence {Urn} = {Urn; m E N z} by N z := {m(n); n E Nd
and Um=Un if m=m(n). If c1=-00, then n/m(n)-+O for nEN1 and
m(n) E Nz, and therefore the limit measure Vl in (4.24) will be identical zero
for the new sequence {Urn}. By Lemma 3.4 it then follows that

(4.26)

which shows that (4.21) hold true for the new sequence and at the same
time we have Cl = c> - 00 for this sequence.

(iv) Without loss of generality we can assume that

for all n E N 1, (4.27)

where V £ R is a compact interval containing S(/lK) in its interior. Indeed,
it has been assumed that all zeros of Un are real. If (4.27) is false, then by
the balayage technique of Lemma 3.2, applied in the same way as in the
proof of Lemma 4.1, we can construct a new sequence of monic polyno
mials so that the new polynomials have all their zeros in a compact interval
V that contains S(/lK) in its interior, and (4.21) holds true for the new
sequence. From (4.27) it follows that S(vd £ v.

(v) Without loss of generality, we can assume that

for j= 1, 2, (4.28)

where au az are the end points of the interval K. Indeed, let b1 be a positive
constant, and consider the monic polynomials

for nEN,

where [nb1J denotes the largest integer not greater than nb1. Since
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uniformly on compact subsets of R\ {ai, a2}, it follows that for b l >0
sufficiently small the sequence

of monic polynomials satisfies (4.21) and (4.28) simultaneously. (It may be
necessary to repeat here step (ii)).

After these preparations we can begin with the actual proof: The techni
cal aim is to construct a sequence {Vn } of monic polynomials so that the
polynomials Vn have a L 2(,u I-norm that asymptotically contradicts the
minimality property (3.23) of the monic orthogonal polynomials Qn(,u; . J.
In a first step we shall construct the asymptotic zero distribution of the new
sequence {Vn }.

In order to have a shorter notation we denote the upper limit function
L 2(,uK, {Un};') in (4.21) by hi' Because of assumption (4.24) it then
follows from Lemma 3.2 that

and because of assumption (4.28) there exists a constant b2 with 0 < b2 < 1
so that

b2 h j (z) <gg(z, <Xl)

forall zEJ(aj):={zEC;Re(z)=aJ, J=1,2. (4.31)

Indeed, the inequality in (4.31) holds true in neighborhoods of the two
points a j and a2 , and since both functions hj(z) and gg(z, <Xl ).are con
tinuous outside of R, we can choose b2 > 0 so small that the inequality in
(4.31) holds true on the two lines J(a j ) and J(a2 ). The constant b2 will be
kept fixed in the sequel.

By Helly's Selection Theorem, we can select an infinite subsequence of
Nil which we continue to denote by N I , so that for the associated sequence

the limits

and (4.33 )

as n --+ 00, n E N 2
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exist. In part (b) of Lemma 3.7 it has been shown that S(vz) S S(Jl). From
(4.33) and the representation stated in Lemma 3.4 it follows that

for all Z E C. (4.34 )

From Lemma 3.7, part (a), we know that

for all Z E C, (4.35a)

and with the assumption that (4.22) is false it therefore follows that

for Z qU.e. on S(JlK)' (4.35b)

Now, (4.21) and (4.35b) together imply that the set

G:= {z E C\R; al < Re(z) < az, bzhl(z) > z(z)} (4.36)

is not empty. Since both functions hi and hz are continuous outside of R,
the set G is open, and since bz < 1, it follows from (4.35a) that G is
bounded.

The set G is symmetric with respect to R. Let G be the union of two
components of Glaying symmetric to R, and let D be the unbounded com
ponent of the the complement of the closure of G. From the maximum
principle for harmonic functions it follows that the closure of G intersects
R. We define G := C\D. The set G is bounded since G is bounded, it is
open, every component is simply connected by definition (actually, it will
turn out that there is only one component), it is symmetric with respect to
R, and it is equal to the interior of its closure by definition. The boundary
of G in C\R is contained in the boundary of G, and the set J:= Gn R is
an interval. In any case, J is connected. If J were not an interval, then it
would be a single point, but this is impossible since J is of positive
capacity, as we shall prove immediately. Since J is an interval, it follows
that G is connected and therefore a domain.

We prove that

and cap(J n S(Jl)) > o. (4.37)

Indeed, the inclusion in (4.37) follows from (4.36). The proof of
cap(J n S(Jl)) > 0 needs some considerations: The function d(z):=
bzhl(z)-hz(z) is harmonic in G\R and zero on (oG)\R. Hence, (oG)\R
consists piecewise of analytic arcs. The normal derivative of d on (oG)\R
directed toward G is positive on every analytic arc. Since the integral of the
normal derivatives of a harmonic function along a closed curve is equal
zero, it follows with the representations (4.30) and (4.34) that bzvI (J) -
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v2(J) < 0, which is only possible if v2(J) > O. We note that aG!l R consists
of two points only.

Since h2 is bounded from below (see (4.35a)), v2(J) > 0 implies that
cap(J!l S(v 2 )) > 0 (see Theorem 2.4 of [La]). With S(v 2 ) <;; S(/1) this
further implies that cap(J!l S(/1)) > O.

As already mentioned earlier, the basic idea of the proof is to copy the
asymptotic zero distribution of the sequence {Un} on J, and the
asymptotic zero distribution of {Pn(/1; .)} on 1(/1)\ J into a new sequence
of monic polynomials. In order to find the appropriate asymptotic zero
distribution for the new sequence, we consider the function

for Z E G

for ZEC\(GU{G3 ,G4}) (4.38)

for ZE{G3 ,G4}'

The function h3 is subharmonic. Indeed, (aG)\R is contained in oa, and
the intersection

(oG\R)!l (aa\aG)

consists of isolated points since at each of these points the complex
derivative of d = b2 h j - h2 has a zero. We will call them critical points.
Both functions b2 h j and h2 are harmonic in C\R, and near oG\ {critical
points} the function h3 is the maximum of these two functions. Hence, the
subharmonicity of h3 follows by a standard technique of potential theory
(see Chapter I, Section 2 of [La]). In any case the subharmonicity of h3 is
critical only on aGo For an arbitrary point Zo E aG\ {G3' G4' critical points}
we will explicitly check the lower mean-value property of h3 . Let e> 0 be
sufficiently small, then

{Iz - zol ~ e} !l G = {Iz - zol ~ e} !l a
and from the definition of a in (4.36) and the definition of h3 in (4.38) it
follows that

-2
1 f h3 (zo + 0 ds(
ne 1(1 ~£

=-2
1 [f b2 h j (zo+Ods(+f h2(Zo+OdS(]
ne Gn {I(I ~£} {I(I ~eJ\G

~ -2
1

f h2(zo + 0 ds( ~ h2(zo) = h3(zo)· (4.39)
ne I" ~ £



150 HERBERT STAHL

The last equality follows from the fact that on (aG)\R, we have
h3 = b2 h1 = h2 . The isolated critical points on (aG)\R cannot spoil the
subharmonicity since both functions b2 h 1 and h2 are continuous in C\R.

Since h3 is subharmonic in C, we have a representation as a logarithmic
potential plus a constant (see Theorem 1.22 of [La]), i.e., there exists a
probability measure V3 with

and (4.40)

Since h3 is identical with h2 in a neighbourhood of infinity, V3 is a probabil
ity measure, and the constant in (4.40) is the same as that in (4.34).

We break down the measure V3 in three parts:

V31 :=b2v1IJ=V31J>

V32 := v2 1S(jllV= v3 1S(jll\J>

V30 := V3 - (V 31 +V32 ), V30 =f. 0,

S(v3d S; J n S(fL),

S(V32 ) S; S(fL)\Int(J),

S(v30 ) S; aGo

(4.41a)

(4.41b)

(4.41c)

All three measures are non-negative. It is not difficult to verify the
equalities stated in (4.41a) to (4.41c). That the measure V30 is not identical
zero follows from the fact that b2 h1(z»h 2(z) for ZEG near aG\{a3 , a4 ,

critical points}.
In the sequel we shall keep the two measures V31 and V32 fixed, while we

will modify the measure V30 . We apply the technique of balayage, and
sweep the mass of V30 out of the domain C\I(fL); however, this will be done
in a special way: The mass is swept only partly (the greater part) to the
interval 1= I(fL), the remaining part is swept to the point infinity. We will
explain the procedure in more detail: Let W z = W I,z be the harmonic
measure representing a point Z E C\I on the interval I (see Chapter IV,
Section 1 of [La]). We consider the measure

(4.42)

where b3 is a constant with 0 < b3 < 1, and compare the potentials of the
two measures V30 and V33 . From the definition of the Green function it
follows that for any fixed x E C\I we have

(4.43a)

and from the representation of the Green function by the equilibrium
distribution (see Theorem 2.6 of [La]) we further know that

q(WI,oo; z) =gC\I(z, (0) + log cap(I). (4.43b)
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The harmonic measure WI, 00 is the equilibrium distribution of I. The defini
tion (4.42) of the measure v33 together with (4.43a) and (4.43) yields

q(V33 - V30; z)::= fq(w I,x - bx ; z) dV30(X) - b3q(wl, 00; z)

(4.43c)

This shows that the measure V33 is positive for b3 sufficiently small. Hence,
the measure V33 results from sweeping out a proportion (1 - b3 ) of the
measure V30 onto the interval I, and sweeping the remaining proportion b3

of V30 to infinity.
Since the interval I is a regular set, it follows that the left-hand side of

(4.43c) is constant on I. We have

(4.44a)

for all z E I, where the inequality in (4.44a) holds true only if the constant
b 3 > 0 has been chosen sufficiently small, which we will assume in the
sequel.

From (4.42) it then follows that

and (4.44b)

Up to a small modification, which will be introduced later in steps (iv) and
(v) below, the measure

is the asymptotic zero distribution we were looking for. We have

v4(C)=1-b 3 <1.

From (4.40) and (4.44a) it follows that

(4.45a)

(4.45b)

for all z E I with c4 :=CZ -C3 >cZ' (4.46)

We now come to the final stage of the proof, the construction of a
sequence {Vn ; n E N z} of monic polynomials. The zero set of each of the
polynomials Vn will be selected in the form of five separate subsets, which
are denoted by Zj,n,j= 1, ... , 5, nENz.
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(4.47)for n--+oo, nENz.

(i) Let ZI,n, nENz, be the set of all zeros of the polynomial U[nb2]

on J. Then from (4.27), from the assumed limits in (4.24), from the defini
tion of the sequence Nz in (4.32), and from (4.4a), it follows that

1 *-VZj -'-+ V3jn ,n

We note that v j ({oJ)=v 3({Oj})=0 for j=3,4, since otherwise hi and
therefore also h3 would not be bounded from below, which has to be the
case because of (4.35a) and Definition (4.38).

(ii) Let ZZ,n, n E N z, be the set of all zeros of the polynomial Qn(j.t; .)
on I\J. From the limits in (4.33) and from Definition (4.41b), it follows
that

1 *-VZ2 -'-+ V32n ,n
for n--+oo, nENz. (4.48 )

(iii) Let Z3,n, nENz, be a set of [n IIv3311J points from the interval
I so that

1
-Vz ~V33n J,n

(4.49)

By Lemma 3.1 such a selection can be made for each n E N z.

(iv) Let b4 be a constant such that

for all ZE I and

(4.50)

(4.51 )for n --+ 00, n E N z,

Then the set Z 4, n' n E N z, is defined as [nb4 J repetitions of the two points
03 and 04' The sets Z4.n are instrumental in eliminating problems at the
end points of the interval J.

(v) Let be nj :=card(Zj,n),j=1, ...,4, nENz. For nENz sufficiently
large, we have ns :=n-n j - ... -n4>0. For each nENz with ns>O, we
select a set ZS,n of ns point from the interval I in such a way that

1 *
ns VZ5,n -'-+ OJ I

where OJ I is the equilibrium distribution on I. Because of assumption (4.23),
we have

limsup ~q(Vz5,n;Z)::(0
n __ co,ne N 2 n

uniformly for Z E I. (4.52)
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After these five separate definitions, we define

and
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(4.53a)

for n E N z. (4.53b)

Hence, every Vn is a monic polynomial of degree n. From the limits in
(4.47), (4.48), (4.49), and (4.51) it follows that

for n --+ 00, n E N z, (4.53c)

where b5 =b3 -2b4 >O. The equality in (4.53c) follows from the definition
of the measure V4 in (4.45a). Using Lemma 3.1, the identities (4.40), (4.41c),
(4.44a), (4.45a), and the asymptotic estimates (4.50) and (4.52), we deduce
from (4.53c) that for any sequence of points {zn} with Zn --+ ZoE C as

n --4 00, we have

. 1 1 1
hm sup - q(V Zn ; zn)";;; h3(zo) + C4-iC3 = h3(zo) + Cz + i C3 ·

n.- 00, nEN2 n
(4.53d)

For the L 2(,U )-norm of the polynomials Vn we will now derive an
asymptotic estimate. But first we prove some auxiliary results: For e > 0
and n E N z sufficiently large, we have

(4.54)

for all Z E J, and

for all zEI\J. Indeed, by the definition of the sets Zn, ZI.n, ..., Z5,n we have
the identity
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and we see that the measure on both sides of (4.56) has no negative mass
on the interval J, which implies that the rational function in the second
term of (4.54) has no poles on the interval J, and we can therefore expect
that there exists an upper estimate. In order to show this we consider the
following asymptotic estimate: For any sequence of points {zn} with
Zn ~zoEJ as n ~ 00, we have

1· 11 1 Q(Zn\ZI,n; Zn) I1m sup - og
n~oo,nEN2 n Q(Z(UCnb2 ])\ZI.n;Zn)

= lim sup ~ q(V Zn - V Z (U[nb2]); Zn)
n~oo,nEN2 n

Indeed, the identity of the two limits in (4.57) follows from identity (4.56).
Because of the limits (4.24) and (4.53c) and because of the fact that the
measure on both sides of (4.56) has no negative mass on J, it follows from
Lemma 3.1 that the first inequality in (4.57) holds true for every Zo Elnt(J).
That this inequality holds also true at the two end points Zo = a3 and
Zo = a4 of the interval J is a consequence of the selection of the. sets Z4,n,
which ensures that the first two terms in (4.57) are close to minus infinity
in neighborhoods of the two points a3 and a4' The second inequality in
(4.57) follows from the identities (4.41c), (4.45a), (4.44a), and the
inequalities (4.50) and (4.52). The next equality in (4.57) follows from the
identities (4.30) and (4.40). The last inequality in (4.57) follows from the
fact that by (4.38) and the definition of the domain G we know that
h3(Z)~b2hl(Z) for all zEJ, and equality holds true for all zElnt(J). From
(4.57) then follows the estimate (4.54).

In order to prove (4.55), we proceed in a similar way as in the verifica
tion of inequality (4.54). First, we consider the identity

(4.58 )

This identity follows like (4.56) from the definition of the sets
Zn, ZI,n, ..., ZS,n' We see that the measure on both sides of (4.58) has no
negative mass on the set I\J. Like in (4.57), we prove that for any
sequence of points {zn} with Zn ~ Zo E I\J as n ~ 00, we have
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= limsup !q(VZn-VZ(QnU,;.));Zn)
n-oc,nEN2 n
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(4.59)

Now, the identity of the two limits in (4.59) follows from identity (4.58).
That the first inequality in (4.59) holds true for every Zo E I\Int(J) follows
by Lemma 3.1 from the fact that the measure on both sides of (4.58) has
no negative mass on 1\J and from the limits (4.33) and (4.53c). That this
inequality holds also for the two end points of J is again, like in (4.57), a
consequence of the special selection of the sets Z4.n- The second inequality
and the last two equalities in (4.59) follow in exactly the same way as the
corresponding relations in (4.57): The second inequality follow from the
identities (4.41c), (4.45a), (4.44a) and the inequalities (4.50) and (4.52), the
next equality follows from the identities (4.34) and (4.40), and the last
equality from (4.38). From (4.59) then follows the estimate (4.55).

From (4.54) and (4.55) we deduce that for B > 0 and n E N 2 sufficiently
large the upper estimate

+e2n((1/2)CJ+e) f IQn(J!; . WdJ!
IV

~ 2e2n(c2 + (1/2)C3 + 4e). (4.60)

The second inequality is a consequence of the second limits in (4.24) and
(4.33) together with (4.32). Since B > 0 was arbitrary and c3 < 0, it follows
from (4.60) with the second limit in (4.24) that

(4.61 )

for n E N 2 sufficiently large. This inequality contradicts the minimality
property (3.23) of the orthogonal monic polynomials Qn(/1; .). Hence, the
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assumption that (4.22) is false has been disproved, and Lemma 4.2 is
proved. Q.E.D.

5. PROOF OF THEOREM 2.1

It has been mentioned in Remark 3 to Theorem 2.1 that there are two
groups of assertions in Theorem 2.1: The assertions (b) and (c) and the
assertions (a), (d), and (e). The first group follows from the second one
without the additional assumption (2.1) of Theorem 2.1, while for the proof
of the reverse directioll assumption (2.1) is necessary. The proof of
Theorem 2.1 wil be organized in such a way that this structure becomes
apparent.

LEMMA 5.1. If the asymptotic estimate (2.4) in assertion (d) of
Theorem 2.1 is false for a sequence {Un; n ENs; N} of polynomials, then
there exists also an infinite sequence {Vn ; n E N} of monic polynomials with
real zeros, for which the estimate (2.4) is again false.

Proof The sequence of polynomials {Un; n E N} will be transformed in
two stages in a sequence {Vn ; n ENs; N} of monic polynomials with real
zeros. In the first stage balayage is used in a similar way as in Lemma 4.1.

Without loss of generality we may assume that the polynomials Un are
monic since the expression on the left-hand side of (2.4) is invariant under
multiplication by a non-zero constant.

If the asymptotic estimate (2.4) does not hold true, then there exist
XoE C with X n E C, n E N, x n --+ X o as n --+ 00, n E N, and

(5.1 )

By the definition of the limit function £2 in Definition 3.3 there exist 8> 0
such that

(5.2)

Let us first assume that the zeros of all polynomials Un are contained in a
bounded set. By Belly's Selction Theorem we can select an infinite
subsequence of N, which we continue to denote by N, such that the two
limits in (3.10) exist; i.e.,

and
1
-log II Unll L2(!-'K) --+ Cl E R u { - (f)}
n

as n --+ 00, n E N. (5.3)
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Of course, (5.2) holds also true for this subsequence. From Lemma 3.4 it
then follows that both sides in (5.2) are logarithmic potentials plus a con
stant, and therefore the inequality (5.2) holds true in a neighborhood of X o
in Cartan's fine topology, i.e., in a classical neighborhood minus a set that
is thin near X o (see Section 3 of Chapter V of [La]). Hence, there exists
x E C with 1m(x) #- 0 such that (5.2) holds true if we there replace X o by x.
In order to keep the notation simple we assume that we ha ve
Im(xo)=:y#-O already for the original pointxo.

Let b > 0 be such that

and assume further that V is a regular, compact set with

(5.4 )

Vs {z; [Im(z)[ ~ b}, (5.5 )

and Xo 1: v. As in the proof of Lemma 4.1 we can, by balayage, sweep all
zeros of each polynomial Un, n E N, from outside V onto the boundary 0V,
and approximate then the balayage measure by discrete measures (see
Lemma 3.1 ). This allows us to prove that there exists a sequence
{Wn; n E N} of monic polynomials with deg( Un) = deg( Wn), all the zeros of
Wn are contained in V, and there exists a constant Co such that

. 1 I Un(z) Ihm -log -- =Co
n--+oc,nEN n Wn(z)

locally uniformly for z E 1/, and

. 1 IUn(Z)!hm sup -log W ( ) ~ Co
n--+CXJ,neN n n Z

(5.6a)

(5.6b)

locally uniformly for Z E C\ v. From (5.6a) and (5.6b) and Definition 3.3
it follows that

(5.7)

For every n E N we now move the non-real zeros of the polynomial Wn

perpendicular onto R. The resulting new polynomial is denoted by V".
Elementary calculations show that

IVn(z)I~IWn(z)1 forall ZER and nEN. (5.8)

Because of the assumptions made in (5.4) and (5.5), and since Im(xo)=y,
we further have

1 1 8
-log IVn(z)[ ;:'-log IWn(z)!--3
n n

(5.9)
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for all n E N and all z in a neighborhood of xo. Hence, by (5.2) and (5.7)
we have

(5.10)

which proves that assertion (d) of Theorem 2.1 is false for the sequence
{Vn ; n EN}, and all zeros of the polynomials Vn are real.

It has been assumed that the zeros of all polynomials Un are contained
in a bounded set. As in the proof of Lemma 3.5 we will show that this addi
tional assumption is not really necessary. Let R > 0 be so large that S(/lK)
and Xo are contained in {Iz[ < R} and factor each polynomial Un in a
product Un,! Un,2 of two monic polynomials Un,! and Un,2 such that Un,!
has all its zeros in {jzl ~kR} and Un,2 has all its zeros in the complement.
If the constant k> 1 is chosen large enough, then it follows from (3.17) that
(5.2) holds also for the sequence {Un, d. This sequence is then used, instead
of the original sequence {Un}, for the construction of {Vn}. Q.E.D.

After these preparations we come to the main topic of the present
section, the proof of Theorem 2.1.

Proof of Theorem 2.1. We first show the equivalence of the two asser
tions (b) and (c), then the equivalence of the three assertions (a), (d), and
(e), and after that the equivalence of the two groups. Assumption (2.1) is
used only in the proof of the implication (b) => (e).

(b) ¢> (c): Assertion (c) follows from assertion (b), the lower estimate
(1.6) in Lemma 1.1, and the fact that ga/z, 00) = 0 qu.e. on S(/lK) (see
Theorem 2.6 of [La]).

On the other hand, assertion (c) implies that assumption (3.13) of
Lemma 3.5 is satisfied, and assertion (b) then follows from the asymptotic
inequality (3.14).

(d) ¢> (e): Assertion (e) is a special case of assertion (d) since
gaK(z, 00) = 0 quasi everywhere on S(/lK)'

The other direction (e) => (d) follows from Lemma 3.5 in a similar way
as the implication (c) => (b). In more detail: From Remark 1 to Defini
tion 3.3 we know that we can assume without los of generality that the
polynomials Un in assertion (d) and (e) are monic. From the asymptotic
inequality (2.5) in assertion (e) and from the definition of l2(/l, { Un}; z) in
(3.7) it then follows by Lemma 3.5 that (3.14) holds true. Together with
Remark 3 to Definition 3.3 this implies assertion (d).

(d) => (a): It follows from assertion (d) that

(5.11 )
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for all Z E C. Together with the lower asymptotic estimate (1.4) of
Lemma 1.1, the asymptotic inequality (5.11) implies (1.7) of Lemma L2 if
we there replace the measure f.1 by f.1 K and the outer domain Q by Q K'

Hence, we have proved that the sequence {P,,(f.1K;·); nEN} has regular
asymptotic behavior.

(a) => (d): Let us assume that assertion (d) is false. From Lemma 5.1
it then follows that there exists an infinite sequence {Un} = {Un E lln;
n EN£: N} of monic polynomials with real zeros such that the asymptotic
inequality (2.4) does not hold true. From Remark 3 to Definition 3.3 we
know that for this sequence the conclusion (3.14) of Lemma 3.5 is false if
we replace f.1 by f.1 K in the lemma. Hence, also (3.13) has to be false, which
implies that

(5.12 )

If we take f.1 = f.1K in Lemma 4.2 and choose aI, az ER such that
S(f.1K) £: [aI' azJ, then it follows from (4.22) that

cap{ Z E S(f.1K); L O(f.1K, N; z) > O} > O. (5.13 )

Because of assertion (c) in Lemma 3.8, the inequality (5.13) contradicts
regular asymptotic behavior of the sequence {Pn (f.1K; .)}, which proves the
implication (a) => (d).

We note that in the deduction of (5.13) from (5.12) we have not used the
full power of Lemma 4.2 since we have assumed S(J1K) £: [aI' azl The
situation is different in the proof of the implication (c) => (d) below.

Up to now, we have proved the equivalence of the assertions within the
two groups {(b), (c)} and {(a), (d), (e)}. We finish the proofby showing
the equivalence of the two groups.

(a) => (c): The implication will be proved indirectly. Let us assume
that assertion (c) is false. From this assumption it follows that

cap{z E S(f.1K); Lo(f.1, N; z) > O} > 0 (5.14)

(see Definition 3.3). In Lemma 4.1 it has been shown that (5.14) implies
(5.13). In the same way as after (5.13), we deduce with the help of assertion
(d) of Lemma 3.8 that inequality (5.13) contradicts regular asymptotic
behavior of the sequence {PnUi.K; '), n EN}, which proves the implication
(a) => (c).

(c) => (d): Only here we use assumption (2.1) of Theorem 2.1; i.e., we
now assume that

cap(K n S(/1)) = cap(l( n S(/1)). (5.15)
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The implication (C) => (d) will be proved indirectly. Let us assume that
assertion (d) is false, while assertion (c) holds true. Then, as in the proof
of the implication (a) => (d), we can deduce from the assumption that asser
tion (d) is false that there exists an infinite sequence {Un E IIn; n E N £ N}
of monic polynomials with real zeros such that (5.12) holds true.

Set

(5.16)

We will show that (5.12) implies cap(S) > O. From (5.12) and (5.15) it
follows that cap(K (\ S(,u)) > O. There exist compact sets V £ K(\ S(,u) with
cap(S(,uv)) > O. Let V be such a set, and assume that

for quasi every z E V. Then it follows from Lemma 3.5 that

(5.17)

for all z E C, (5.18 )

where in Lemma 3.5 we have to replace ,u by ,uK' and ,uK by ,uv. Since
K(\ S(,u) can be exhausted by sets V of the considered type, it follows that

L 2(,uK, {Un};z)~gC\(1(ns(ll)lz, oo)=gC\S(lljz, (0), (5.19)

for all z E C. The equality in (5.19) is a consequence of (2.8) and (5.15). The
inequality (5.19) contradicts (5.12). Hence, (5.17) is false for some sets V,
and this implies that cap(S) > O.

The set K is the union of at most countably many open intervals. Since
a countably infinite union of sets of capacity zero is again a set of capacity
zero (see the corollary to Theorem 2.2 of [La]), at least one of these
intervals, which we will denote by (al> a2), satisfies

(5.20)

We set K 1 := Cal> a2]. It is easy to see that (5.16) and the inequality (5.20)
imply

(5.21 )

If we now apply Lemma 4.2 to the sequence {Un} and replace K by K 1

in Lemma 4.2, then it follows from this lemma and (5.21) that

(5.22)

The inequality (5.22) contradicts assertion (c). Indeed, from the asymptotic
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inequality (2.3) in assertion (c), from Definition 3.3, and from Lemma 3.5,
it follows that

LoU)" N; z),,:; 0 (5.23)

for z quasi everywhere on S(f.lK)' Since S(f.lKJ <::;;. S(f.lK), inequality (5.23)
contradicts (5.22). Hence, we have proved the implication (c) =:> (d y, and
this completes the proof of Theorem 2.1. Q.E.D.
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